The Lives of Stars

Dr. Bill Wolf

Assistant Professor Planetarium Director Department of Physics & Astronomy University of Wisconsin – Eau Claire Upward Bound High Performance Computing Academy Friday, June 28, 2024

The Rundown

Stars in a Nutshell (*30 min*)

Finding the Main Sequence (30 min) Stellar Lifetimes (15 min)

HPC Academy: The Lives of Stars

[2]

Slides with a Blue background: computing challenge

Fixed-width text with this background indicates commands you should run in the terminal.

This logo will also remind you that you have work to do.

sbatch submit.sh

[3]

Slides with a **Gold** background: hints, solutions, or explanations.

They'll also have this logo as a reminder that we're working on a challenge.

Part 1: Stars in a Nutshell

"You'd look pretty simple from 10 parsecs away, too."

– Fred Hoyle

©2014 Todd Helmenstine sciencenotes.ord

There are many reasons to study stars.

Spectacular Explosions!

Space Weather

Exoplanets

[7]

We can't visit stars (yet), so we can only study the light they emit or models of them.

2024-06-28

ALMA Radio Observatory, Chile

Modules for Experiments in Stellar Astrophysics

HPC Academy: The Lives of Stars

[8]

How do observers tell stars apart?

How do observers tell stars apart?

Brightness

Color

Location

"Luminosity" (and distance)

2024-06-28

"Effective Temperature"

HPC Academy: The Lives of Stars

[10]

Brightness is how bright a star *appears* to be. Luminosity is how much energy it emits per unit time in *all* wavelengths.

2024-06-28

This bulb has a luminosity of 5 Watts, but its brightness depends on how close you are to it.

For the sun,

 $L_{\odot} = 3.83 \times 10^{26} \text{ Watts}$

We'll call this unit a solar luminosity

HPC Academy: The Lives of Stars

The **effective temperature** of a hot object determines its **color**.

Cooler = Redder

image credit: primedomotics.com

Hotter = Bluer

Stars in **clusters** have the same age and distance, but different luminosities and colors.

The Pleiades star cluster

Image credit: Raul Villaverde Fraile

We show the luminosity/color of a stars on a **Hertzsprung-Russell (HR)** diagram.

Luminosity increases along *y*-axis Effective Temperature *decreases*

along *x*-axis

2024-06-28

Related to Effective Temperature

HPC Academy: The Lives of Stars

We show the luminosity/color of a stars on a **Hertzsprung-Russell (HR)** diagram.

Luminosity increases along *y*-axis **Effective Temperature** *decreases* along *x*-axis

2024-06-28

Stars form when a cloud of mostly hydrogen gas and dust is compressed by its own gravity.

HPC Academy: The Lives of Stars

Stars form when a cloud of mostly hydrogen gas and dust is compressed by its own gravity.

As a protostar shrinks...

Emits energy as light

Density increases

Pressure increases

Temperature increases

Stars form when a cloud of mostly hydrogen gas and dust is compressed by its own gravity.

If protostar is **massive and gets hot enough...**

It begins **fusing hydrogen to helium** in its core and stops contracting

A star is born!

While stars fuse hydrogen to helium, we say they are **main sequence** stars.

He-rich core

2024-06-28

"Unburned" Hydrogen envelope

ZAMS: Zero Age Main Sequence Newborn stars at the beginning of their main sequence lifetime

TAMS: Terminal Age Main Sequence Stars that have *just* run out of hydrogen to fuse in their cores

The sun is roughly halfway between ZAMS and TAMS

The main difference between stars in a cluster is their initial mass.

The main difference between stars in a cluster is their **initial mass**.

Part 2: Finding the Main Sequence

"To err is human, but to really foul things up requires a computer."

Goal: Use MESA to create stars of a **variety of masses** to reproduce the main sequence.

Modules for Experiments in Stellar Astrophysics

2024-06-28

Task 1: Get set up

A. Launch/Login to Open OnDemand (ondemand.hpc.uwec.edu)

B. Launch "Home Directory" App

C. Navigate to directory: $Day_2 \rightarrow Session_6 \rightarrow to_ZAMS$

	' users /	wolfwm / Day_2 /	Change direc	tory	
2			□ Show Ov	wner/Mode	C Show Do
гуре	•	Name		Siz	e
•			: -	-	
			• •	-	
•		Session_6	: -	-	

Task 2: Set the mass of your star

A. Select your mass

- Visit this page: <u>bit.ly/hpc-stars-2024</u> -
- Follow instructions to pick a "random" mass
- **B.** Set mass for simulation
 - **Edit** inlist_project in OnDemand
 - Fill in the mass on the right side of the equal sign of the line that sets initial_mass, and click on the Save" button in upper left. You can then close that tab.

starting specifications Replace "CHANGE ME" with your mass initial_mass = CHANGE ME ! in Msun units initial_z = 0.02 ! 2% of star by mass is elements

~	inlist_project	:-	1.32 KB	
	mk	 View 		s
			Edit 👦	

Task 3: Run the Simulation

A. Submit the job

2024-06-28

- In File viewer, click on ">_ Open in Terminal" button
- Execute \$ sbatch job.sh
- **B.** Wait for job to complete (typically around 2 minutes)
 - You can check how it is doing by looking at the end of the mesa.out file \$ tail -n 20 mesa.out
 - Simulation is done when you see something like

 - * Final Luminosity : 1.22E+05 L_sun
 - * Final Effective Temperature: 39977.8 K

Task 4: Report Final Luminosity and Effective Temperature

A. After run is over, locate final luminosity and effective temperature from mesa.out \$ tail -n 20 mesa.out
 B. Report data to google form (same as earlier)

bit.ly/hpc-stars-2024

- Note: 6.02E23 is shorthand for 6.02 × 10²³ (scientific notation).
 Google forms understands this notation, so you can use it.
- C. Check out the neat video of your simulation!

2024-06-28

- Refresh OnDemand file browser tab and download
 - to_ZAMS.mp4 (three dot menu → select "↓ Download")

Your simulation *should* produce a video with plots showing how your stellar model is evolved.

- Top: Temperature vs. Density in the stellar model
- **Lightning introduction to logarithms** $100 = 10^2 \Leftrightarrow \log_{10}(100) = 2$
- Lower left: Path of star through HR diagram. Vertical: logarithm of luminosity; horizontal: logarithm of effective temperature

Yes! The variety of masses helps explain where on the main sequence a star falls.

HPC Academy: The Lives of Stars

2024-06-28

[29]

Part 3: Stellar Lifetimes

"The bigger they are, the harder they fall."

Different clusters look slightly different on the HR diagram.

- Different colors = different clusters
- Low-luminosity cutoffs due to telescope sensitivity High-luminosity
- differences... less clear

2024-06-28

Perhaps massive stars leave main sequence more rapidly than low-mass stars?

As star runs out of hydrogen

- Core contracts
- Envelope expands

Perhaps massive stars leave main sequence more rapidly than low-mass stars?

As star runs out of hydrogen

- Core contracts
- Envelope expands

Star appears redder!

If massive stars leave main sequence first, should find a turnoff on HR diagram that varies with age

Task 5: Set up for finding Terminal Age Main Sequence (TAMS)

- A. Navigate to Day_2/Session_6/to_TAMS
 - Close the browser tab with the terminal from task 4
 - Switch to OnDemand file browser tab

2024-06-28

 Use "breadcrumbs" near top to get back to Session_6, then open to_TAMS

B. Edit inlist_project again to set the mass to your value

- Open inlist_project in file viewer in edit mode
- Fill in the mass on the right side of the equal sign of the line that sets initial_mass, and then save and close it

Task 6: Run the Simulation

- A. Open a terminal and submit the job \$ sbatch job.sh
- **B.** Wait for job to complete (typically around 2 minutes)
 - You can check how it is doing by looking at the end of the mesa.out file \$ tail -n 20 mesa.out
 - This shows the last 20 lines of the file mesa.out

Task 7: Report Final Age at TAMS

A. After run is over, locate final age from mesa.out

- Final results should be surrounded by a box of asterisks near the bottom of the file
- Note: this will again be in scientific notation
- **B.** Report mass and final age (at TAMS) on the form https://bit.ly/hpc-star-ages-2024

Scientific notation is still valid. For example, $1.2E9 = 1.2 \times 10^9$

Check out to TAMS.mp4 to see how your star evolves!

 Top and lower left: Same as before (temperature-density profile and path through HR diagram)

Lower right: Abundance Profile
x-coordinate: how much mass is ✓
enclosed by this position
y-coordinate: fraction of matter at that location that is a given element

[37

Yes! Massive stars live fast and die hard.

Massive stars are gas guzzlers: big tank and horrible efficiency.

Acause Vives of Stars

Low-mass stars are the fuel-efficient cars with tiny gas tanks.

[38]

Astronomers use this "Main Sequence Turnoff" to estimate the age of clusters

2024-06-28