» Variable Rate Agriculture is the intelligent application of agricultural
techniques to reduce waste and improve efficiency.

Four-Fold CV:

» Dataset is splitinto training and validation sets
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Preliminary Feature CV Results:
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Is the high potential for model over fitting.

» Our study is focused on exploring the ability of different interpolation
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Fig. 4: lllustration of four-fold cross validation

Table 2: Performance metrics for cross validation across 2020, 2021, and 2022

Feature Importance with Linear Regression:

» Simple Linear Regression model was used to determine how well
each feature predicted mean dry yield. Examples shown below
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Fig. 5a: Scatterplot correlation
of VARI to Mean Yield on 6/15/2022

Fig. 5b: Scatterplot correlation of Blue to
Mean Yield on 6/23/2020

Table 3: Comparison of
mean R? values generated

with Linear Regression to the mean

feature importance values
generated with Random Forest.
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» Results indicate CV is an important tool for detecting spatial variation.
» CV and Test Results are more similar when spatial components are

Incorporated into building folds.

» Spatial models in general can reduce overfitting which is essential for crop

estimation as fields can have variable characteristics.
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Fig. 3: Point data collected in 2020 | Blugold Center for High-Performance Computing under NSF grant CNS-1920220

Fig. 6: Normalized mean feature importance histograms for each year.
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