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Abstract Design Methods (Continued)
Proteins are biological machines, whose functions require specific movements e Simulate the intracellular-like OH m " Analysis
of the_ir_ structural elements, whi(?h_ Include domains angl loops. "hgse_motions environment with biologically inert HO 92, h& . Using the program CARMA. principal component analysis was performed
are critical for molecular recognition — a central paradigm for designing drug molecules to replicate the intracellular » 6’& ® to visualize how each molecular system evolved over time.
molecules to combat various diseases. The intracellular space Is densely packed crowder molecules \Water  Fig 3 Chemical structure of biologically
with metabolites and macromolecules or “crowders” that restrict proteins’ L nert ethylene glycol (EG) alongside 3-D .
molecules and sodium 1ons are also  representation. o |
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investigate the effects of crowding and confinement on an enzyme’s dynamics se nigh-performance computation to Y 2 demonstrates the Influence different crowders have —
optimize these systems and observe ‘

and function is to create a virtual system by constructing molecular models of "'Y on specific regions and overall enzyme motion. N

enzymes encapsulated by solvent and crowder molecules. In the present study, changes In protein dynamics In o 4 Cramical stuctue of bioodical
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molecular dynamics simulations are being performed to examine the impact of different crowded environments. inert polyethylene glycol (PEG) alongside Preliminary Results

crowding and confinement on the prolyl-tRNA synthetase of Escherichia coli. 3°D representation.

This enzyme plays a vital role in protein production in living cells. With these Methods
simulations, the cellular environment can be replicated to probe enzyme
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and the protein of interest and the preliminary simulation results will be biological molecule databases, as protein data bank files. Polymer 4 8
presented. Understanding how crowder molecules influence protein dynamics chains used to simulate crowder molecules are built using VMD. 2 B ProRS + PEG 600
and function could lead to applications in areas of drug discovery and design. + The biological modeling software VMD is used to make 3-D O éj
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Conclusions and Future Directions

« Using Newtonian mechanics, each atom of the
simulated cellular environment is tracked as

 Principal component analysis shows restricted protein movement with increasing

| ProRS Pro-AMP PrORNAT AL point charges with some mass. crowder size.
Fig 1. The tII?I\!Asynthetase docked with Pro-AMP charges tRNA with proline for ’I[:FIQ?\I,ZA Ribtbhor; struc;tlljzre (r)]f p_rc;ll_yl- |‘ * The Slmulatlon_ IS carried out Wlth d Set number o Comp|ete a bmdmg Study with inhibitor molecule PLP bound to Ec ProRS in the
protein translation. synthetase of Escherichia coli.
(1)1(;05t9p5 showing molecular interactions over presence of crowder molecules such as EG, PEG 600, and PEG 20k.
- ; ns.
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